Using Model Checking to
Validate Al Planner
Domain Models
John Penix, Charles Pecheur
and Klaus Havelund

Automated Software Engineering
NASA Ames Research Center

NASA Ames Automated Software Engineering

The Problem: High-Assurance
Autonomous Systems

¢ Long lifetimes
¢ Limited Access
¢ Reactive/Adaptive

¢ Agent-Based
Architectures

¢ Advanced
Algorithms

¢ Knowledge-Based

NASA Ames Automated Software Engineering

Verification and Validation of
Autonomous Planning Systems

@ Our approach is to separate
algorithm verification from
domain model validation Computer Scientists

-.\

. Autonomous Planner)

(

|

Domain Engineers

NASA Ames Automated Software Engineering

Model Checking

@ Technique for verification of finite-state
systems - traditionally used for hardware

@ Determines whether a FSM is a “model” of a
temporal logic formula

¢ Exhaustive - evaluates all possible executions
of events in the system

¢ Allows non-deterministic modeling/abstraction
of the “environment”

¢ Limited by “state space explosion”

NASA Ames Automated Software Engineering

Model Checking vs. Planning

& Exhaustive model checking algorithms can
find flaws in domain models that may not be
discovered by testing with a heuristic planner

Goal State

..\ Hazard State

Initial State

NASA Ames Automated Software Engineering

~

(The planner may find
a path to the goal
without discovering
the hazard state.
Model checking tries
all paths and finds

the hazard state.
_ J

The HSTS Planner’s
Domain Description Language

@ Object-oriented data structures with qualitative
and quantitative constraints on variable values

Robot Hole
‘State variables ‘State variables
At: {A,B,C} At: {A,B,C}

Task: { Move,Fix,Rest} Status: { Exists,Fixed}
Charge: { Empty,Full}

((Robot. Task=Fix) starts before (10 20) (Hole.Status = Fixed))

NASA Ames Automated Software Engineering

Model Checking for DDL

& \We developed a translation from a DDL model
to a finite state transition model

@ Tested the translation on 3 model checkers:
¢ Spin (from Bell Labs)
¢ Murphi (from Stanford University)
e SMV (from Carnegie Mellon University)

NASA Ames Automated Software Engineering

Results. Expressibility

@ General translation to finite state transition
model able to express qualitative constraints
with temporal locality

¢ No support for quantitative constraints

¢ Temporally distant relationships require
special consideration:

@ history variables in Spin & Murphi
¢ fairness constraints in SMV

NASA Ames Automated Software Engineering

Results: Performance

@ Experimented on “small’” model of autonomous
robot with 65 temporal constraints

¢ The model had 16320 reachable states out of
559872 potential states (highly constrained)

¢ Exhaustive verification with Spin & Murphi In
under 30 seconds

¢ Exhaustive verification with SMV in 0.05
seconds (due to better target language)

NASA Ames Automated Software Engineering

Results: Capabilities

& Model checking “error traces” are plans

@ Able to perform analysis that are not directly
supported by testing with the planner:

@ |s there a plan (a path from an Initial state
to a goal state) for any legal initial state?

¢ |s there a plan for every legal initial state?
¢ |s there a plan from every reachable state?
¢ Can | reach a state where X Is true?

NASA Ames Automated Software Engineering

Conclusions

@ Model checking has the potential to overcome
limits to model validation using a planner

¢ Model checking can be used to effectively
validate “simple” domain models

@ Further experiments are necessary to see Iif
temporally distant relations and quantitative
constraints can be effectively supported

NASA Ames Automated Software Engineering

